👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Integration Durch Trigonometrische Substitution

Integration durch trigonometrische Substitution Rechner

Mit unserem Integration durch trigonometrische Substitution Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of integration by trigonometric substitution. This solution was automatically generated by our smart calculator:

$\int\sqrt{x^2+4}dx$
2

We can solve the integral $\int\sqrt{x^2+4}dx$ by applying integration method of trigonometric substitution using the substitution

$x=2\tan\left(\theta \right)$

Differentiate both sides of the equation $x=2\tan\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(2\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(2\tan\left(\theta \right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$2\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$2\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)^2$

The derivative of the linear function is equal to $1$

$2\sec\left(\theta \right)^2$
3

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=2\sec\left(\theta \right)^2d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int2\sqrt{4\tan\left(\theta \right)^2+4}\sec\left(\theta \right)^2d\theta$

Simplify $4\tan\left(\theta \right)^2+4$ into secant function

$\int2\sqrt{4\sec\left(\theta \right)^2}\sec\left(\theta \right)^2d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int2\cdot 2\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$

Multiply $2$ times $2$

$\int4\sec\left(\theta \right)\sec\left(\theta \right)^2d\theta$

When multiplying exponents with same base you can add the exponents: $4\sec\left(\theta \right)\sec\left(\theta \right)^2$

$\int4\sec\left(\theta \right)^{3}d\theta$
4

Substituting in the original integral, we get

$\int4\sec\left(\theta \right)^{3}d\theta$
5

The integral of a function times a constant ($4$) is equal to the constant times the integral of the function

$4\int\sec\left(\theta \right)^{3}d\theta$
6

Simplify the integral $\int\sec\left(\theta \right)^{3}d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$
7

Solve the product $4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$

$4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)+2\int\sec\left(\theta \right)d\theta$
8

Simplify the fraction $4\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)$

$2\sin\left(\theta \right)\sec\left(\theta \right)^{2}+2\int\sec\left(\theta \right)d\theta$

The power of a quotient is equal to the quotient of the power of the numerator and denominator: $\displaystyle\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$

$2\left(\frac{x}{\sqrt{x^2+4}}\right)\left(\frac{x^2+4}{4}\right)+2\int\sec\left(\theta \right)d\theta$

Multiplying fractions $\frac{x}{\sqrt{x^2+4}} \times \frac{x^2+4}{4}$

$2\left(\frac{x\left(x^2+4\right)}{4\sqrt{x^2+4}}\right)+2\int\sec\left(\theta \right)d\theta$

Simplify the fraction by $x^2+4$

$2\left(\frac{x\sqrt{x^2+4}}{4}\right)+2\int\sec\left(\theta \right)d\theta$

Multiplying the fraction by $2$

$\frac{1}{2}x\sqrt{x^2+4}+2\int\sec\left(\theta \right)d\theta$
9

Express the variable $\theta$ in terms of the original variable $x$

$\frac{1}{2}x\sqrt{x^2+4}+2\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$2\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|$

Express the variable $\theta$ in terms of the original variable $x$

$2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$
10

The integral $2\int\sec\left(\theta \right)d\theta$ results in: $2\ln\left(\frac{\sqrt{x^2+4}+x}{2}\right)$

$2\ln\left(\frac{\sqrt{x^2+4}+x}{2}\right)$
11

Gather the results of all integrals

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|$
12

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\frac{\sqrt{x^2+4}+x}{2}\right|+C_0$
13

Simplify the expression by applying the property of the logarithm of a quotient

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\sqrt{x^2+4}+x\right|+C_1$

Endgültige Antwort auf das Problem

$\frac{1}{2}x\sqrt{x^2+4}+2\ln\left|\sqrt{x^2+4}+x\right|+C_1$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!