👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Integrale Durch Partielle Bruchrechnung

Integrale durch partielle Bruchrechnung Rechner

Mit unserem Integrale durch partielle Bruchrechnung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of integrals by partial fraction expansion. This solution was automatically generated by our smart calculator:

$\int\frac{1}{x\left(x+1\right)}dx$

Rewrite the fraction $\frac{1}{x\left(x+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{x\left(x+1\right)}=\frac{A}{x}+\frac{B}{x+1}$

Find the values for the unknown coefficients: $A, B$. The first step is to multiply both sides of the equation from the previous step by $x\left(x+1\right)$

$1=x\left(x+1\right)\left(\frac{A}{x}+\frac{B}{x+1}\right)$

Multiplying polynomials

$1=\frac{x\left(x+1\right)A}{x}+\frac{x\left(x+1\right)B}{x+1}$

Simplifying

$1=\left(x+1\right)A+xB$

Assigning values to $x$ we obtain the following system of equations

$\begin{matrix}1=A&\:\:\:\:\:\:\:(x=0) \\ 1=-B&\:\:\:\:\:\:\:(x=-1)\end{matrix}$

Proceed to solve the system of linear equations

$\begin{matrix}1A & + & 0B & =1 \\ 0A & - & 1B & =1\end{matrix}$

Rewrite as a coefficient matrix

$\left(\begin{matrix}1 & 0 & 1 \\ 0 & -1 & 1\end{matrix}\right)$

Reducing the original matrix to a identity matrix using Gaussian Elimination

$\left(\begin{matrix}1 & 0 & 1 \\ 0 & 1 & -1\end{matrix}\right)$

The integral of $\frac{1}{x\left(x+1\right)}$ in decomposed fractions equals

$\frac{1}{x}+\frac{-1}{x+1}$
2

Rewrite the fraction $\frac{1}{x\left(x+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{x}+\frac{-1}{x+1}$
3

Expand the integral $\int\left(\frac{1}{x}+\frac{-1}{x+1}\right)dx$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$\int\frac{1}{x}dx+\int\frac{-1}{x+1}dx$
4

We can solve the integral $\int\frac{-1}{x+1}dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+1$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x+1$

Differentiate both sides of the equation $u=x+1$

$du=\frac{d}{dx}\left(x+1\right)$

Find the derivative

$\frac{d}{dx}\left(x+1\right)$

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$1$
5

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=dx$
6

Substituting $u$ and $dx$ in the integral and simplify

$\int\frac{1}{x}dx+\int\frac{-1}{u}du$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\ln\left|x\right|$
7

The integral $\int\frac{1}{x}dx$ results in: $\ln\left(x\right)$

$\ln\left(x\right)$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$-\ln\left|u\right|$

Replace $u$ with the value that we assigned to it in the beginning: $x+1$

$-\ln\left|x+1\right|$
8

The integral $\int\frac{-1}{u}du$ results in: $-\ln\left(x+1\right)$

$-\ln\left(x+1\right)$
9

Gather the results of all integrals

$\ln\left|x\right|-\ln\left|x+1\right|$
10

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\ln\left|x\right|-\ln\left|x+1\right|+C_0$

Endgültige Antwort auf das Problem

$\ln\left|x\right|-\ln\left|x+1\right|+C_0$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!