👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Trigonometrische Integrale

Trigonometrische Integrale Rechner

Mit unserem Trigonometrische Integrale Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Ici, nous vous montrons un exemple résolu étape par étape de intégrales trigonométriques. Cette solution a été générée automatiquement par notre calculatrice intelligente :

$\int\sin\left(x\right)^4dx$
2

Appliquer la formule : $\int\sin\left(\theta \right)^ndx$$=\frac{-\sin\left(\theta \right)^{\left(n-1\right)}\cos\left(\theta \right)}{n}+\frac{n-1}{n}\int\sin\left(\theta \right)^{\left(n-2\right)}dx$, où $n=4$

$\frac{-\sin\left(x\right)^{3}\cos\left(x\right)}{4}+\frac{3}{4}\int\sin\left(x\right)^{2}dx$
3

Multipliez le terme unique $\frac{3}{4}$ par chaque terme du polynôme $\left(\frac{1}{2}x-\frac{1}{4}\sin\left(2x\right)\right)$

$\frac{1}{2}\cdot \frac{3}{4}x-\frac{1}{4}\cdot \frac{3}{4}\sin\left(2x\right)$

Appliquer la formule : $\int\sin\left(\theta \right)^2dx$$=\frac{1}{2}\theta -\frac{1}{4}\sin\left(2\theta \right)+C$

$\frac{3}{4}\left(\frac{1}{2}x-\frac{1}{4}\sin\left(2x\right)\right)$
4

L'intégrale $\frac{3}{4}\int\sin\left(x\right)^{2}dx$ se traduit par : $\frac{1}{2}\cdot \frac{3}{4}x-\frac{1}{4}\cdot \frac{3}{4}\sin\left(2x\right)$

$\frac{1}{2}\cdot \frac{3}{4}x-\frac{1}{4}\cdot \frac{3}{4}\sin\left(2x\right)$
5

Rassembler les résultats de toutes les intégrales

$\frac{-\sin\left(x\right)^{3}\cos\left(x\right)}{4}-\frac{1}{4}\cdot \frac{3}{4}\sin\left(2x\right)+\frac{1}{2}\cdot \frac{3}{4}x$
6

Appliquer la formule : $\frac{a}{b}\frac{c}{f}$$=\frac{ac}{bf}$, où $a=-1$, $b=4$, $c=3$, $a/b=-\frac{1}{4}$, $f=4$, $c/f=\frac{3}{4}$ et $a/bc/f=-\frac{1}{4}\cdot \frac{3}{4}\sin\left(2x\right)$

$\frac{-\sin\left(x\right)^{3}\cos\left(x\right)}{4}-\frac{3}{16}\sin\left(2x\right)+\frac{1}{2}\cdot \frac{3}{4}x$
7

Appliquer la formule : $\frac{a}{b}\frac{c}{f}$$=\frac{ac}{bf}$, où $a=1$, $b=2$, $c=3$, $a/b=\frac{1}{2}$, $f=4$, $c/f=\frac{3}{4}$ et $a/bc/f=\frac{1}{2}\cdot \frac{3}{4}x$

$\frac{-\sin\left(x\right)^{3}\cos\left(x\right)}{4}-\frac{3}{16}\sin\left(2x\right)+\frac{3}{8}x$
8

Comme l'intégrale que nous résolvons est une intégrale indéfinie, lorsque nous terminons l'intégration, nous devons ajouter la constante d'intégration $C$

$\frac{-\sin\left(x\right)^{3}\cos\left(x\right)}{4}-\frac{3}{16}\sin\left(2x\right)+\frac{3}{8}x+C_0$

Endgültige Antwort auf das Problem

$\frac{-\sin\left(x\right)^{3}\cos\left(x\right)}{4}-\frac{3}{16}\sin\left(2x\right)+\frac{3}{8}x+C_0$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!