👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Unbestimmte Integrale

Unbestimmte Integrale Rechner

Mit unserem Unbestimmte Integrale Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

x(x23)dx
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of indefinite integrals. This solution was automatically generated by our smart calculator:

x(x23)dx\int x\left(x^2-3\right)dx
2

We can solve the integral x(x23)dx\int x\left(x^2-3\right)dx by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it uu), which when substituted makes the integral easier. We see that x23x^2-3 it's a good candidate for substitution. Let's define a variable uu and assign it to the choosen part

u=x23u=x^2-3

Differentiate both sides of the equation u=x23u=x^2-3

du=ddx(x23)du=\frac{d}{dx}\left(x^2-3\right)

Find the derivative

ddx(x23)\frac{d}{dx}\left(x^2-3\right)

The derivative of a sum of two or more functions is the sum of the derivatives of each function

ddx(x2)+ddx(3)\frac{d}{dx}\left(x^2\right)+\frac{d}{dx}\left(-3\right)

The derivative of the constant function (3-3) is equal to zero

ddx(x2)\frac{d}{dx}\left(x^2\right)

The power rule for differentiation states that if nn is a real number and f(x)=xnf(x) = x^n, then f(x)=nxn1f'(x) = nx^{n-1}

2x2x
3

Now, in order to rewrite dxdx in terms of dudu, we need to find the derivative of uu. We need to calculate dudu, we can do that by finding the derivative of the equation above

du=2xdxdu=2xdx
4

Isolate dxdx in the previous equation

du2x=dx\frac{du}{2x}=dx

Simplify the fraction xu2x\frac{xu}{2x} by xx

u2du\int\frac{u}{2}du
5

Substituting uu and dxdx in the integral and simplify

u2du\int\frac{u}{2}du
6

Take the constant 12\frac{1}{2} out of the integral

12udu\frac{1}{2}\int udu
7

Applying the power rule for integration, xndx=xn+1n+1\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}, where nn represents a number or constant function, in this case n=1n=1

1212u2\frac{1}{2}\cdot \frac{1}{2}u^2

When multiplying two powers that have the same base (12\frac{1}{2}), you can add the exponents

(12)2u2\left(\frac{1}{2}\right)^2u^2

The power of a quotient is equal to the quotient of the power of the numerator and denominator: (ab)n=anbn\displaystyle\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}

14u2\frac{1}{4}u^2
8

Simplify the expression

14u2\frac{1}{4}u^2

Replace uu with the value that we assigned to it in the beginning: x23x^2-3

14(x23)2\frac{1}{4}\left(x^2-3\right)^2
9

Replace uu with the value that we assigned to it in the beginning: x23x^2-3

14(x23)2\frac{1}{4}\left(x^2-3\right)^2
10

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration CC

14(x23)2+C0\frac{1}{4}\left(x^2-3\right)^2+C_0

Endgültige Antwort auf das Problem

14(x23)2+C0\frac{1}{4}\left(x^2-3\right)^2+C_0

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!