👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Integrale Von Exponentialfunktionen

Integrale von Exponentialfunktionen Rechner

Mit unserem Integrale von Exponentialfunktionen Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of integrals of exponential functions. This solution was automatically generated by our smart calculator:

$\int\left(2x+7\right)e^{x^2+7x}dx$
2

We can solve the integral $\int\left(2x+7\right)e^{\left(x^2+7x\right)}dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x^2+7x$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x^2+7x$

Differentiate both sides of the equation $u=x^2+7x$

$du=\frac{d}{dx}\left(x^2+7x\right)$

Find the derivative

$\frac{d}{dx}\left(x^2+7x\right)$

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{d}{dx}\left(x^2\right)+\frac{d}{dx}\left(7x\right)$

The derivative of the linear function times a constant, is equal to the constant

$\frac{d}{dx}\left(x^2\right)+7\frac{d}{dx}\left(x\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$2x+7\frac{d}{dx}\left(x\right)$

The derivative of the linear function is equal to $1$

$2x+7$
3

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=\left(2x+7\right)dx$
4

Isolate $dx$ in the previous equation

$\frac{du}{\left(2x+7\right)}=dx$

Simplify the fraction $\frac{\left(2x+7\right)e^u}{2x+7}$ by $2x+7$

$\int e^udu$
5

Substituting $u$ and $dx$ in the integral and simplify

$\int e^udu$
6

The integral of the exponential function is given by the following formula $\displaystyle \int a^xdx=\frac{a^x}{\ln(a)}$, where $a > 0$ and $a \neq 1$

$e^u$

Replace $u$ with the value that we assigned to it in the beginning: $x^2+7x$

$e^{\left(x^2+7x\right)}$
7

Replace $u$ with the value that we assigned to it in the beginning: $x^2+7x$

$e^{\left(x^2+7x\right)}$
8

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$e^{\left(x^2+7x\right)}+C_0$

Endgültige Antwort auf das Problem

$e^{\left(x^2+7x\right)}+C_0$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!