👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Trennbare Differentialgleichung

Trennbare Differentialgleichung Rechner

Mit unserem Trennbare Differentialgleichung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of separable differential equation. This solution was automatically generated by our smart calculator:

$y=x\frac{dy}{dx}$
2

Group the terms of the differential equation. Move the terms of the $y$ variable to the left side, and the terms of the $x$ variable to the right side of the equality

$y\cdot dy=x\cdot dx$
3

Integrate both sides of the differential equation, the left side with respect to $y$, and the right side with respect to $x$

$\int ydy=\int xdx$

Applying the power rule for integration, $\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}$, where $n$ represents a number or constant function, in this case $n=1$

$\frac{1}{2}y^2$
4

Solve the integral $\int ydy$ and replace the result in the differential equation

$\frac{1}{2}y^2=\int xdx$

Applying the power rule for integration, $\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}$, where $n$ represents a number or constant function, in this case $n=1$

$\frac{1}{2}x^2$

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}x^2+C_0$
5

Solve the integral $\int xdx$ and replace the result in the differential equation

$\frac{1}{2}y^2=\frac{1}{2}x^2+C_0$

Multiplying the fraction by $y^2$

$\frac{y^2}{2}=\frac{1}{2}x^2+C_0$

Multiplying the fraction by $x^2$

$\frac{y^2}{2}=\frac{x^2}{2}+C_0$

Multiply both sides of the equation by $2$

$y^2=2\left(\frac{x^2}{2}+C_0\right)$

Removing the variable's exponent

$\sqrt{y^2}=\pm \sqrt{2\left(\frac{x^2}{2}+C_0\right)}$

Cancel exponents $2$ and $1$

$y=\pm \sqrt{2\left(\frac{x^2}{2}+C_0\right)}$

Simplify the product by distributing $2$ to both terms

$y=\pm \sqrt{x^2+2C_0}$

We can rename $2C_0$ as other constant

$y=\pm \sqrt{x^2+C_1}$

As in the equation we have the sign $\pm$, this produces two identical equations that differ in the sign of the term $\sqrt{x^2+C_1}$. We write and solve both equations, one taking the positive sign, and the other taking the negative sign

$y=\sqrt{x^2+C_1},\:y=-\sqrt{x^2+C_1}$

Combining all solutions, the $2$ solutions of the equation are

$y=\sqrt{x^2+C_1},\:y=-\sqrt{x^2+C_1}$
6

Find the explicit solution to the differential equation. We need to isolate the variable $y$

$y=\sqrt{x^2+C_1},\:y=-\sqrt{x^2+C_1}$

Endgültige Antwort auf das Problem

$y=\sqrt{x^2+C_1},\:y=-\sqrt{x^2+C_1}$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!