👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Quotientenregel Der Differenzierung

Quotientenregel der Differenzierung Rechner

Mit unserem Quotientenregel der Differenzierung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of quotient rule of differentiation. This solution was automatically generated by our smart calculator:

$\frac{d}{dx}\left(\frac{x}{x^2+1}\right)$
2

Apply the quotient rule for differentiation, which states that if $f(x)$ and $g(x)$ are functions and $h(x)$ is the function defined by ${\displaystyle h(x) = \frac{f(x)}{g(x)}}$, where ${g(x) \neq 0}$, then ${\displaystyle h'(x) = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{g(x)^2}}$

$\frac{\frac{d}{dx}\left(x\right)\left(x^2+1\right)-x\frac{d}{dx}\left(x^2+1\right)}{\left(x^2+1\right)^2}$
3

The derivative of the linear function is equal to $1$

$\frac{x^2+1-x\frac{d}{dx}\left(x^2+1\right)}{\left(x^2+1\right)^2}$

The derivative of the constant function ($1$) is equal to zero

$\frac{x^2+1-x\frac{d}{dx}\left(x^2\right)}{\left(x^2+1\right)^2}$
4

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{x^2+1-x\frac{d}{dx}\left(x^2\right)}{\left(x^2+1\right)^2}$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$-2x\cdot x^{\left(2-1\right)}$

Subtract the values $2$ and $-1$

$-2x\cdot x$
5

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{x^2+1- 2x\cdot x}{\left(x^2+1\right)^2}$
6

Multiply $-1$ times $2$

$\frac{x^2+1-2x\cdot x}{\left(x^2+1\right)^2}$
7

When multiplying two powers that have the same base ($x$), you can add the exponents

$\frac{x^2+1-2x^2}{\left(x^2+1\right)^2}$

Endgültige Antwort auf das Problem

$\frac{x^2+1-2x^2}{\left(x^2+1\right)^2}$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!