Mit unserem Grundlegende Differenzierungsregeln Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.
Ici, nous vous montrons un exemple résolu étape par étape de règles de différenciation de base. Cette solution a été générée automatiquement par notre calculatrice intelligente :
Appliquer la formule : $\frac{d}{dx}\left(\frac{a}{b}\right)$$=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}$, où $a=x^2+3x+1$ et $b=x^2+2x+2$
Appliquer la formule : $\frac{a}{b}\frac{c}{f}$$=\frac{ac}{bf}$, où $a=x^2+3x+1$, $b=x^2+2x+2$, $c=2\left(\frac{d}{dx}\left(x^2+3x+1\right)\left(x^2+2x+2\right)-\left(x^2+3x+1\right)\frac{d}{dx}\left(x^2+2x+2\right)\right)$, $a/b=\frac{x^2+3x+1}{x^2+2x+2}$, $f=\left(x^2+2x+2\right)^2$, $c/f=\frac{2\left(\frac{d}{dx}\left(x^2+3x+1\right)\left(x^2+2x+2\right)-\left(x^2+3x+1\right)\frac{d}{dx}\left(x^2+2x+2\right)\right)}{\left(x^2+2x+2\right)^2}$ et $a/bc/f=\frac{x^2+3x+1}{x^2+2x+2}\frac{2\left(\frac{d}{dx}\left(x^2+3x+1\right)\left(x^2+2x+2\right)-\left(x^2+3x+1\right)\frac{d}{dx}\left(x^2+2x+2\right)\right)}{\left(x^2+2x+2\right)^2}$
Appliquer la formule : $\frac{a}{b}\frac{c}{f}$$=\frac{ac}{bf}$, où $a=x^2+3x+1$, $b=x^2+2x+2$, $c=2\left(\frac{d}{dx}\left(x^2+3x+1\right)\left(x^2+2x+2\right)-\left(x^2+3x+1\right)\frac{d}{dx}\left(x^2+2x+2\right)\right)$, $a/b=\frac{x^2+3x+1}{x^2+2x+2}$, $f=\left(x^2+2x+2\right)^2$, $c/f=\frac{2\left(\frac{d}{dx}\left(x^2+3x+1\right)\left(x^2+2x+2\right)-\left(x^2+3x+1\right)\frac{d}{dx}\left(x^2+2x+2\right)\right)}{\left(x^2+2x+2\right)^2}$ et $a/bc/f=\frac{x^2+3x+1}{x^2+2x+2}\frac{2\left(\frac{d}{dx}\left(x^2+3x+1\right)\left(x^2+2x+2\right)-\left(x^2+3x+1\right)\frac{d}{dx}\left(x^2+2x+2\right)\right)}{\left(x^2+2x+2\right)^2}$
Appliquer la formule : $x\cdot x^n$$=x^{\left(n+1\right)}$, où $x^nx=\left(x^2+2x+2\right)\left(x^2+2x+2\right)^2$, $x=x^2+2x+2$, $x^n=\left(x^2+2x+2\right)^2$ et $n=2$
Appliquer la formule : $x\cdot x^n$$=x^{\left(n+1\right)}$, où $x^nx=\left(x^2+2x+2\right)\left(x^2+2x+2\right)^2$, $x=x^2+2x+2$, $x^n=\left(x^2+2x+2\right)^2$ et $n=2$