👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Kettenregel Der Differenzierung

Kettenregel der Differenzierung Rechner

Mit unserem Kettenregel der Differenzierung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of chain rule of differentiation. This solution was automatically generated by our smart calculator:

$\frac{d}{dx}\left(\left(3x-2x^2\right)^3\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$3\left(3x-2x^2\right)^{3-1}\frac{d}{dx}\left(3x-2x^2\right)$

Add the values $3$ and $-1$

$3\left(3x-2x^2\right)^{2}\frac{d}{dx}\left(3x-2x^2\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$3\left(3x-2x^2\right)^{3-1}\frac{d}{dx}\left(3x-2x^2\right)$

Subtract the values $3$ and $-1$

$3\left(3x-2x^2\right)^{2}\frac{d}{dx}\left(3x-2x^2\right)$
2

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$3\left(3x-2x^2\right)^{2}\frac{d}{dx}\left(3x-2x^2\right)$
3

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$3\left(3x-2x^2\right)^{2}\left(\frac{d}{dx}\left(3x\right)+\frac{d}{dx}\left(-2x^2\right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$3\left(3x-2x^2\right)^{2}\left(3\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(-2x^2\right)\right)$

The derivative of the linear function is equal to $1$

$3\left(3x-2x^2\right)^{2}\left(3+\frac{d}{dx}\left(-2x^2\right)\right)$
4

The derivative of the linear function times a constant, is equal to the constant

$3\left(3x-2x^2\right)^{2}\left(3\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(-2x^2\right)\right)$
5

The derivative of the linear function is equal to $1$

$3\left(3x-2x^2\right)^{2}\left(3+\frac{d}{dx}\left(-2x^2\right)\right)$
6

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$3\left(3x-2x^2\right)^{2}\left(3-2\frac{d}{dx}\left(x^2\right)\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$-4x^{\left(2-1\right)}$

Subtract the values $2$ and $-1$

$-4x$
7

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$3\left(3x-2x^2\right)^{2}\left(3-2\cdot 2x\right)$
8

Multiply $-2$ times $2$

$3\left(3x-2x^2\right)^{2}\left(3-4x\right)$

Factor the polynomial $\left(3x-2x^2\right)$ by it's greatest common factor (GCF): $x$

$3\left(x\left(3-2x\right)\right)^{2}\left(3-4x\right)$

The power of a product is equal to the product of it's factors raised to the same power

$3x^{2}\left(3-2x\right)^{2}\left(3-4x\right)$
9

Simplify the derivative

$3x^{2}\left(3-2x\right)^{2}\left(3-4x\right)$

Endgültige Antwort auf das Problem

$3x^{2}\left(3-2x\right)^{2}\left(3-4x\right)$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!