Hier zeigen wir Ihnen Schritt für Schritt ein gelöstes Beispiel für kettenregel der differenzierung. Diese Lösung wurde automatisch von unserem intelligenten Taschenrechner generiert:
Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=3$ und $x=3x-2x^2$
Wenden Sie die Formel an: $a+b$$=a+b$, wobei $a=3$, $b=-1$ und $a+b=3-1$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=3$ und $x=3x-2x^2$
Wenden Sie die Formel an: $a+b$$=a+b$, wobei $a=3$, $b=-1$ und $a+b=3-1$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}\frac{d}{dx}\left(x\right)$, wobei $a=3$ und $x=3x-2x^2$
Die Ableitung einer Summe von zwei oder mehr Funktionen ist die Summe der Ableitungen der einzelnen Funktionen
Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x\right)$$=1$
Wenden Sie die Formel an: $\frac{d}{dx}\left(nx\right)$$=n\frac{d}{dx}\left(x\right)$, wobei $n=3$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x\right)$$=1$
Wenden Sie die Formel an: $\frac{d}{dx}\left(cx\right)$$=c\frac{d}{dx}\left(x\right)$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}$, wobei $a=2$
Wenden Sie die Formel an: $a+b$$=a+b$, wobei $a=2$, $b=-1$ und $a+b=2-1$
Wenden Sie die Formel an: $\frac{d}{dx}\left(x^a\right)$$=ax^{\left(a-1\right)}$, wobei $a=2$
Wenden Sie die Formel an: $ab$$=ab$, wobei $ab=-2\cdot 2x$, $a=-2$ und $b=2$
Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!