👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Homogene Differentialgleichung

Homogene Differentialgleichung Rechner

Mit unserem Homogene Differentialgleichung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of homogeneous differential equation. This solution was automatically generated by our smart calculator:

$\left(y^2+2xy\right)dx-x^2dy=0$
2

We can identify that the differential equation $\left(y^2+2xy\right)dx-x^2dy=0$ is homogeneous, since it is written in the standard form $M(x,y)dx+N(x,y)dy=0$, where $M(x,y)$ and $N(x,y)$ are the partial derivatives of a two-variable function $f(x,y)$ and both are homogeneous functions of the same degree

$\left(y^2+2xy\right)dx-x^2dy=0$
3

Use the substitution: $y=ux$

$\left(\left(ux\right)^2+2xux\right)dx-x^2\left(u\cdot dx+x\cdot du\right)=0$

Multiply the single term $-x^2$ by each term of the polynomial $\left(u\cdot dx+x\cdot du\right)$

$\left(\left(ux\right)^2+2x^2u\right)dx-ux^2\cdot dx-x^{3}du=0$

The power of a product is equal to the product of it's factors raised to the same power

$\left(u^2x^2+2x^2u\right)dx-ux^2\cdot dx-x^{3}du=0$

Multiply the single term $dx$ by each term of the polynomial $\left(u^2x^2+2x^2u\right)$

$u^2x^2dx+2x^2u\cdot dx-ux^2\cdot dx-x^{3}du=0$

Combining like terms $2x^2u\cdot dx$ and $-ux^2\cdot dx$

$u^2x^2dx+u\cdot x^2\cdot dx-x^{3}du=0$

Group the terms of the equation

$-x^{3}du=-u^2x^2dx-u\cdot x^2\cdot dx$

Multiply both sides of the equation by $-1$

$x^{3}du=u^2x^2dx+u\cdot x^2\cdot dx$

Factor the polynomial $u^2x^2dx+u\cdot x^2\cdot dx$ by it's greatest common factor (GCF): $u\cdot x^2\cdot dx$

$x^{3}du=u\cdot x^2\left(u+1\right)\cdot dx$

Group the terms of the differential equation. Move the terms of the $u$ variable to the left side, and the terms of the $x$ variable to the right side of the equality

$\frac{1}{u}\frac{1}{u+1}du=\frac{x^2}{x^{3}}dx$

Simplify the expression $\frac{1}{u}\frac{1}{u+1}du$

$\frac{1}{u\left(u+1\right)}du=\frac{x^2}{x^{3}}dx$

Simplify the expression $\frac{x^2}{x^{3}}dx$

$\frac{1}{u\left(u+1\right)}du=\frac{1}{x}dx$
4

Expand and simplify

$\frac{1}{u\left(u+1\right)}du=\frac{1}{x}dx$
5

Integrate both sides of the differential equation, the left side with respect to $u$, and the right side with respect to $x$

$\int\frac{1}{u\left(u+1\right)}du=\int\frac{1}{x}dx$

Rewrite the fraction $\frac{1}{u\left(u+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{u}+\frac{-1}{u+1}$

Expand the integral $\int\left(\frac{1}{u}+\frac{-1}{u+1}\right)du$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$\int\frac{1}{u}du+\int\frac{-1}{u+1}du$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\ln\left|u\right|+\int\frac{-1}{u+1}du$

Apply the formula: $\int\frac{n}{x+b}dx$$=nsign\left(x\right)\ln\left(x+b\right)+C$, where $b=1$, $x=u$ and $n=-1$

$\ln\left|u\right|-\ln\left|u+1\right|$
6

Solve the integral $\int\frac{1}{u\left(u+1\right)}du$ and replace the result in the differential equation

$\ln\left|u\right|-\ln\left|u+1\right|=\int\frac{1}{x}dx$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\ln\left|x\right|$

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\ln\left|x\right|+C_0$
7

Solve the integral $\int\frac{1}{x}dx$ and replace the result in the differential equation

$\ln\left|u\right|-\ln\left|u+1\right|=\ln\left|x\right|+C_0$
8

Replace $u$ with the value $\frac{y}{x}$

$\ln\left(\frac{y}{x}\right)-\ln\left(\frac{y}{x}+1\right)=\ln\left(x\right)+C_0$

Endgültige Antwort auf das Problem

$\ln\left(\frac{y}{x}\right)-\ln\left(\frac{y}{x}+1\right)=\ln\left(x\right)+C_0$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!