👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Differentialgleichungen

Differentialgleichungen Rechner

Mit unserem Differentialgleichungen Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of differential equations. This solution was automatically generated by our smart calculator:

$\frac{dy}{dx}=\sin\left(5x\right)$
2

Group the terms of the differential equation. Move the terms of the $y$ variable to the left side, and the terms of the $x$ variable to the right side of the equality

$dy=\sin\left(5x\right)\cdot dx$
3

Integrate both sides of the differential equation, the left side with respect to $y$, and the right side with respect to $x$

$\int1dy=\int\sin\left(5x\right)dx$

The integral of a constant is equal to the constant times the integral's variable

$y$
4

Solve the integral $\int1dy$ and replace the result in the differential equation

$y=\int\sin\left(5x\right)dx$

We can solve the integral $\int\sin\left(5x\right)dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $5x$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=5x$

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=5dx$

Isolate $dx$ in the previous equation

$dx=\frac{du}{5}$

Substituting $u$ and $dx$ in the integral and simplify

$\int\frac{\sin\left(u\right)}{5}du$

Take the constant $\frac{1}{5}$ out of the integral

$\frac{1}{5}\int\sin\left(u\right)du$

Apply the integral of the sine function: $\int\sin(x)dx=-\cos(x)$

$-\left(\frac{1}{5}\right)\cos\left(u\right)$

Multiply the fraction and term in $-\left(\frac{1}{5}\right)\cos\left(u\right)$

$-\frac{1}{5}\cos\left(u\right)$

Replace $u$ with the value that we assigned to it in the beginning: $5x$

$-\frac{1}{5}\cos\left(5x\right)$

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$-\frac{1}{5}\cos\left(5x\right)+C_0$
5

Solve the integral $\int\sin\left(5x\right)dx$ and replace the result in the differential equation

$y=-\frac{1}{5}\cos\left(5x\right)+C_0$

Endgültige Antwort auf das Problem

$y=-\frac{1}{5}\cos\left(5x\right)+C_0$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!