👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Grenzen Durch Rationalisierung

Grenzen durch Rationalisierung Rechner

Mit unserem Grenzen durch Rationalisierung Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of limits by rationalizing. This solution was automatically generated by our smart calculator:

$\lim_{x\to0}\left(\frac{\sqrt{5+x}-\sqrt{5}}{x}\right)$
2

Applying rationalisation

$\lim_{x\to0}\left(\frac{\sqrt{5+x}-\sqrt{5}}{x}\frac{\sqrt{5+x}+\sqrt{5}}{\sqrt{5+x}+\sqrt{5}}\right)$

Multiply and simplify the expression within the limit

$\lim_{x\to0}\left(\frac{\sqrt{5+x}-\sqrt{5}}{x}\frac{\sqrt{5+x}+\sqrt{5}}{\sqrt{5+x}+\sqrt{5}}\right)$

Multiplying fractions $\frac{\sqrt{5+x}-\sqrt{5}}{x} \times \frac{\sqrt{5+x}+\sqrt{5}}{\sqrt{5+x}+\sqrt{5}}$

$\lim_{x\to0}\left(\frac{\left(\sqrt{5+x}-\sqrt{5}\right)\left(\sqrt{5+x}+\sqrt{5}\right)}{x\left(\sqrt{5+x}+\sqrt{5}\right)}\right)$

The first term ($a$) is $\sqrt{5+x}$.

The second term ($b$) is $\sqrt{5}$.

Solve the product of difference of squares $\left(\sqrt{5+x}-\sqrt{5}\right)\left(\sqrt{5+x}+\sqrt{5}\right)$

$\lim_{x\to0}\left(\frac{\left(\sqrt{5+x}\right)^2- \left(\sqrt{5}\right)^2}{x\left(\sqrt{5+x}+\sqrt{5}\right)}\right)$

Cancel exponents $\frac{1}{2}$ and $2$

$\lim_{x\to0}\left(\frac{5+x- \left(\sqrt{5}\right)^2}{x\left(\sqrt{5+x}+\sqrt{5}\right)}\right)$

Cancel exponents $\frac{1}{2}$ and $2$

$\lim_{x\to0}\left(\frac{5+x-5}{x\left(\sqrt{5+x}+\sqrt{5}\right)}\right)$
3

Multiply and simplify the expression within the limit

$\lim_{x\to0}\left(\frac{5+x-5}{x\left(\sqrt{5+x}+\sqrt{5}\right)}\right)$
4

Subtract the values $5$ and $-5$

$\lim_{x\to0}\left(\frac{x}{x\left(\sqrt{5+x}+\sqrt{5}\right)}\right)$
5

Simplify the fraction $\frac{x}{x\left(\sqrt{5+x}+\sqrt{5}\right)}$ by $x$

$\lim_{x\to0}\left(\frac{1}{\sqrt{5+x}+\sqrt{5}}\right)$

Evaluate the limit $\lim_{x\to0}\left(\frac{1}{\sqrt{5+x}+\sqrt{5}}\right)$ by replacing all occurrences of $x$ by $0$

$\frac{1}{\sqrt{5+0}+\sqrt{5}}$

Add the values $5$ and $0$

$\frac{1}{\sqrt{5}+\sqrt{5}}$

Combining like terms $\sqrt{5}$ and $\sqrt{5}$

$\frac{1}{2\sqrt{5}}$
6

Evaluate the limit $\lim_{x\to0}\left(\frac{1}{\sqrt{5+x}+\sqrt{5}}\right)$ by replacing all occurrences of $x$ by $0$

$\frac{1}{2\sqrt{5}}$

Endgültige Antwort auf das Problem

$\frac{1}{2\sqrt{5}}$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!