Mit unserem Grenzwerte nach der L'Hpitalschen Regel Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.
Here, we show you a step-by-step solved example of limits by l'hôpital's rule. This solution was automatically generated by our smart calculator:
x→0lim(x21−cos(x))
Zwischenschritte
Plug in the value 0 into the limit
x→0lim(021−cos(0))
The cosine of 0 equals 1
x→0lim(021−1)
Multiply −1 times 1
x→0lim(021−1)
Subtract the values 1 and −1
x→0lim(020)
Calculate the power 02
x→0lim(00)
2
If we directly evaluate the limit limx→0(x21−cos(x)) as x tends to 0, we can see that it gives us an indeterminate form
00
3
We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately
x→0lim(dxd(x2)dxd(1−cos(x)))
Zwischenschritte
Find the derivative of the numerator
dxd(1−cos(x))
The derivative of a sum of two or more functions is the sum of the derivatives of each function
dxd(1)+dxd(−cos(x))
The derivative of the constant function (1) is equal to zero
dxd(−cos(x))
The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function
−dxd(cos(x))
The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if f(x)=cos(x), then f′(x)=−sin(x)⋅Dx(x)
1sin(x)
Any expression multiplied by 1 is equal to itself
sin(x)
Find the derivative of the denominator
dxd(x2)
The power rule for differentiation states that if n is a real number and f(x)=xn, then f′(x)=nxn−1
2x
4
After deriving both the numerator and denominator, and simplifying, the limit results in
x→0lim(2xsin(x))
Zwischenschritte
Plug in the value 0 into the limit
x→0lim(2⋅0sin(0))
The sine of 0 equals 0
x→0lim(2⋅00)
Multiply 2 times 0
x→0lim(00)
5
If we directly evaluate the limit limx→0(2xsin(x)) as x tends to 0, we can see that it gives us an indeterminate form
00
6
We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately
x→0lim(dxd(2x)dxd(sin(x)))
Zwischenschritte
Find the derivative of the numerator
dxd(sin(x))
The derivative of the sine of a function is equal to the cosine of that function times the derivative of that function, in other words, if f(x)=sin(x), then f′(x)=cos(x)⋅Dx(x)
cos(x)
Find the derivative of the denominator
dxd(2x)
The derivative of the linear function times a constant, is equal to the constant
2dxd(x)
The derivative of the linear function is equal to 1
2
7
After deriving both the numerator and denominator, and simplifying, the limit results in
x→0lim(2cos(x))
8
Evaluate the limit limx→0(2cos(x)) by replacing all occurrences of x by 0
2cos(0)
9
The cosine of 0 equals 1
21
Endgültige Antwort auf das Problem
21
Haben Sie Probleme mit Mathematik?
Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!