👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Grenzwerte Nach Der L'Hpitalschen Regel

Grenzwerte nach der L'Hpitalschen Regel Rechner

Mit unserem Grenzwerte nach der L'Hpitalschen Regel Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

limx0(1cos(x)x2 )
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of limits by l'hôpital's rule. This solution was automatically generated by our smart calculator:

limx0(1cos(x)x2)\lim_{x\to 0}\left(\frac{1-\cos\left(x\right)}{x^2}\right)

Plug in the value 00 into the limit

limx0(1cos(0)02)\lim_{x\to0}\left(\frac{1-\cos\left(0\right)}{0^2}\right)

The cosine of 00 equals 11

limx0(1102)\lim_{x\to0}\left(\frac{1- 1}{0^2}\right)

Multiply 1-1 times 11

limx0(1102)\lim_{x\to0}\left(\frac{1-1}{0^2}\right)

Subtract the values 11 and 1-1

limx0(002)\lim_{x\to0}\left(\frac{0}{0^2}\right)

Calculate the power 020^2

limx0(00)\lim_{x\to0}\left(\frac{0}{0}\right)
2

If we directly evaluate the limit limx0(1cos(x)x2)\lim_{x\to0}\left(\frac{1-\cos\left(x\right)}{x^2}\right) as xx tends to 00, we can see that it gives us an indeterminate form

00\frac{0}{0}
3

We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately

limx0(ddx(1cos(x))ddx(x2))\lim_{x\to 0}\left(\frac{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}{\frac{d}{dx}\left(x^2\right)}\right)

Find the derivative of the numerator

ddx(1cos(x))\frac{d}{dx}\left(1-\cos\left(x\right)\right)

The derivative of a sum of two or more functions is the sum of the derivatives of each function

ddx(1)+ddx(cos(x))\frac{d}{dx}\left(1\right)+\frac{d}{dx}\left(-\cos\left(x\right)\right)

The derivative of the constant function (11) is equal to zero

ddx(cos(x))\frac{d}{dx}\left(-\cos\left(x\right)\right)

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

ddx(cos(x))-\frac{d}{dx}\left(\cos\left(x\right)\right)

The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if f(x)=cos(x)f(x) = \cos(x), then f(x)=sin(x)Dx(x)f'(x) = -\sin(x)\cdot D_x(x)

1sin(x)1\sin\left(x\right)

Any expression multiplied by 11 is equal to itself

sin(x)\sin\left(x\right)

Find the derivative of the denominator

ddx(x2)\frac{d}{dx}\left(x^2\right)

The power rule for differentiation states that if nn is a real number and f(x)=xnf(x) = x^n, then f(x)=nxn1f'(x) = nx^{n-1}

2x2x
4

After deriving both the numerator and denominator, and simplifying, the limit results in

limx0(sin(x)2x)\lim_{x\to0}\left(\frac{\sin\left(x\right)}{2x}\right)

Plug in the value 00 into the limit

limx0(sin(0)20)\lim_{x\to0}\left(\frac{\sin\left(0\right)}{2\cdot 0}\right)

The sine of 00 equals 00

limx0(020)\lim_{x\to0}\left(\frac{0}{2\cdot 0}\right)

Multiply 22 times 00

limx0(00)\lim_{x\to0}\left(\frac{0}{0}\right)
5

If we directly evaluate the limit limx0(sin(x)2x)\lim_{x\to0}\left(\frac{\sin\left(x\right)}{2x}\right) as xx tends to 00, we can see that it gives us an indeterminate form

00\frac{0}{0}
6

We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately

limx0(ddx(sin(x))ddx(2x))\lim_{x\to 0}\left(\frac{\frac{d}{dx}\left(\sin\left(x\right)\right)}{\frac{d}{dx}\left(2x\right)}\right)

Find the derivative of the numerator

ddx(sin(x))\frac{d}{dx}\left(\sin\left(x\right)\right)

The derivative of the sine of a function is equal to the cosine of that function times the derivative of that function, in other words, if f(x)=sin(x){f(x) = \sin(x)}, then f(x)=cos(x)Dx(x){f'(x) = \cos(x)\cdot D_x(x)}

cos(x)\cos\left(x\right)

Find the derivative of the denominator

ddx(2x)\frac{d}{dx}\left(2x\right)

The derivative of the linear function times a constant, is equal to the constant

2ddx(x)2\frac{d}{dx}\left(x\right)

The derivative of the linear function is equal to 11

22
7

After deriving both the numerator and denominator, and simplifying, the limit results in

limx0(cos(x)2)\lim_{x\to0}\left(\frac{\cos\left(x\right)}{2}\right)
8

Evaluate the limit limx0(cos(x)2)\lim_{x\to0}\left(\frac{\cos\left(x\right)}{2}\right) by replacing all occurrences of xx by 00

cos(0)2\frac{\cos\left(0\right)}{2}
9

The cosine of 00 equals 11

12\frac{1}{2}

Endgültige Antwort auf das Problem

12\frac{1}{2}

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!