Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Exakte Differentialgleichung
- Lineare Differentialgleichung
- Trennbare Differentialgleichung
- Homogene Differentialgleichung
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Teilen Sie alle Terme der Differentialgleichung durch $x^2+1$
Learn how to solve gleichungen problems step by step online.
$\frac{x^2+1}{x^2+1}\frac{dy}{dx}+\frac{3xy}{x^2+1}=\frac{6x}{x^2+1}$
Learn how to solve gleichungen problems step by step online. (x^2+1)dy/dx+3xy=6x. Teilen Sie alle Terme der Differentialgleichung durch x^2+1. Vereinfachung. Wir können erkennen, dass die Differentialgleichung die Form hat: \frac{dy}{dx} + P(x)\cdot y(x) = Q(x), so dass wir sie als lineare Differentialgleichung erster Ordnung einstufen können, wobei P(x)=\frac{3x}{x^2+1} und Q(x)=\frac{6x}{x^2+1}. Um die Differentialgleichung zu lösen, müssen wir zunächst den integrierenden Faktor finden \mu(x). Um \mu(x) zu finden, müssen wir zunächst Folgendes berechnen \int P(x)dx.