Ausgehend von der linken Seite (LHS) der Identität
Applying the trigonometric identity: $1+\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2$
Wenden Sie die Formel an: $\frac{a}{a}$$=1$, wobei $a=\sec\left(25\right)^2$ und $a/a=\frac{\sec\left(25\right)^2}{\sec\left(25\right)^2}$
Since we have reached the expression of our goal, we have proven the identity
Wie sollte ich dieses Problem lösen?
Verschaffen Sie sich einen Überblick über Schritt-für-Schritt-Lösungen.
Verdienen Sie sich Lösungspunkte, die Sie gegen vollständige Schritt-für-Schritt-Lösungen eintauschen können.
Speichern Sie Ihre Lieblingsprobleme.
Werden Sie Premium und erhalten Sie Zugang zu unbegrenzten Lösungen, Downloads, Rabatten und mehr!