Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Exakte Differentialgleichung
- Lineare Differentialgleichung
- Trennbare Differentialgleichung
- Homogene Differentialgleichung
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Schreiben Sie die Differentialgleichung in Leibnizscher Notation um
Learn how to solve differentialgleichungen problems step by step online.
$\frac{dy}{dx}-2y=x^2e^{2x}$
Learn how to solve differentialgleichungen problems step by step online. y^'-2y=x^2e^(2x). Schreiben Sie die Differentialgleichung in Leibnizscher Notation um. Wir können erkennen, dass die Differentialgleichung die Form hat: \frac{dy}{dx} + P(x)\cdot y(x) = Q(x), so dass wir sie als lineare Differentialgleichung erster Ordnung einstufen können, wobei P(x)=-2 und Q(x)=x^2e^{2x}. Um die Differentialgleichung zu lösen, müssen wir zunächst den integrierenden Faktor finden \mu(x). Um \mu(x) zu finden, müssen wir zunächst Folgendes berechnen \int P(x)dx. Der integrierende Faktor \mu(x) ist also.