👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Trigonometrie

Trigonometrie Rechner

Mit unserem Trigonometrie Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of trigonometry. This solution was automatically generated by our smart calculator:

$\frac{1+cscx}{secx}-cotx=cosx$
2

Starting from the left-hand side (LHS) of the identity

$\frac{1+\csc\left(x\right)}{\sec\left(x\right)}-\cot\left(x\right)$
3

Combine all terms into a single fraction with $\sec\left(x\right)$ as common denominator

$\frac{1+\csc\left(x\right)-\cot\left(x\right)\sec\left(x\right)}{\sec\left(x\right)}$

Applying the trigonometric identity: $\cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}$

$\frac{1+\csc\left(x\right)+\frac{-\cos\left(x\right)}{\sin\left(x\right)}\sec\left(x\right)}{\sec\left(x\right)}$

Applying the secant identity: $\displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$

$\frac{1+\csc\left(x\right)+\frac{-\cos\left(x\right)}{\sin\left(x\right)}\frac{1}{\cos\left(x\right)}}{\sec\left(x\right)}$

Multiplying fractions $\frac{-\cos\left(x\right)}{\sin\left(x\right)} \times \frac{1}{\cos\left(x\right)}$

$\frac{1+\csc\left(x\right)+\frac{-\cos\left(x\right)}{\sin\left(x\right)\cos\left(x\right)}}{\sec\left(x\right)}$

Simplify the fraction $\frac{-\cos\left(x\right)}{\sin\left(x\right)\cos\left(x\right)}$ by $\cos\left(x\right)$

$\frac{1+\csc\left(x\right)+\frac{-1}{\sin\left(x\right)}}{\sec\left(x\right)}$

The reciprocal sine function is cosecant: $\frac{1}{\sin(x)}=\csc(x)$

$\frac{1+\csc\left(x\right)-\csc\left(x\right)}{\sec\left(x\right)}$
4

Simplify $-\cot\left(x\right)\sec\left(x\right)$ by applying trigonometric identities

$\frac{1+\csc\left(x\right)-\csc\left(x\right)}{\sec\left(x\right)}$
5

Cancel like terms $\csc\left(x\right)$ and $-\csc\left(x\right)$

$\frac{1}{\sec\left(x\right)}$
6

Applying the trigonometric identity: $\displaystyle\frac{1}{\sec(\theta)}=\cos(\theta)$

$\cos\left(x\right)$
7

Since we have reached the expression of our goal, we have proven the identity

true

Endgültige Antwort auf das Problem

true

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!