👉 Probiere jetzt NerdPal aus! Unsere neue Mathe-App für iOS und Android
  1. Rechenmaschinen
  2. Quadratische Formel

Quadratische Formel Rechner

Mit unserem Quadratische Formel Schritt-für-Schritt-Rechner erhalten Sie detaillierte Lösungen für Ihre mathematischen Probleme. Üben Sie Ihre mathematischen Fähigkeiten und lernen Sie Schritt für Schritt mit unserem Mathe-Löser. Alle unsere Online-Rechner finden Sie hier.

Go!
Symbolischer Modus
Text-Modus
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of quadratic formula. This solution was automatically generated by our smart calculator:

$x^2+6x+8=0$
2

Find the roots of the equation using the Quadratic Formula

$x^2+6x+8=0$
3

Factor the trinomial $x^2+6x+8$ finding two numbers that multiply to form $8$ and added form $6$

$\begin{matrix}\left(2\right)\left(4\right)=8\\ \left(2\right)+\left(4\right)=6\end{matrix}$
4

Rewrite the polynomial as the product of two binomials consisting of the sum of the variable and the found values

$\left(x+2\right)\left(x+4\right)=0$
5

Break the equation in $2$ factors and set each factor equal to zero, to obtain simpler equations

$x+2=0,\:x+4=0$
6

Solve the equation ($1$)

$x+2=0$
7

We need to isolate the dependent variable $x$, we can do that by simultaneously subtracting $2$ from both sides of the equation

$x+2-2=0-2$
8

Canceling terms on both sides

$x=-2$
9

Solve the equation ($2$)

$x+4=0$
10

We need to isolate the dependent variable $x$, we can do that by simultaneously subtracting $4$ from both sides of the equation

$x+4-4=0-4$
11

Canceling terms on both sides

$x=-4$
12

Combining all solutions, the $2$ solutions of the equation are

$x=-2,\:x=-4$

Endgültige Antwort auf das Problem

$x=-2,\:x=-4$

Haben Sie Probleme mit Mathematik?

Detaillierte Schritt-für-Schritt-Lösungen für Tausende von Problemen, die jeden Tag wachsen!