Übung
$-8\:\cos\left(x\right)\cot\left(x\right)+\sec\left(x\right)\tan\left(x\right)$
Schritt-für-Schritt-Lösung
Learn how to solve polynomielle faktorisierung problems step by step online. -8cos(x)cot(x)+sec(x)tan(x). Anwendung der trigonometrischen Identität: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}. Wenden Sie die Formel an: a\frac{b}{c}=\frac{ba}{c}, wobei a=\sec\left(x\right), b=\sin\left(x\right) und c=\cos\left(x\right). Applying the trigonometric identity: \sin\left(\theta \right)\sec\left(\theta \right) = \tan\left(\theta \right). Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}.
-8cos(x)cot(x)+sec(x)tan(x)
Endgültige Antwort auf das Problem
$\frac{-8\cos\left(x\right)^{4}+\sin\left(x\right)^2}{\cos\left(x\right)^2\sin\left(x\right)}$