Übung
$\left(\frac{\sqrt{h^5}}{6\sqrt{h^3}}\right)^4$
Schritt-für-Schritt-Lösung
Learn how to solve faktorisierung problems step by step online. ((h^5^(1/2))/(6h^3^(1/2)))^4. Simplify \sqrt{h^3} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 3 and n equals \frac{1}{2}. Simplify \sqrt{h^5} using the power of a power property: \left(a^m\right)^n=a^{m\cdot n}. In the expression, m equals 5 and n equals \frac{1}{2}. Wenden Sie die Formel an: \frac{a^m}{a^n}=a^{\left(m-n\right)}, wobei a^n=\sqrt{h^{3}}, a^m=\sqrt{h^{5}}, a=h, a^m/a^n=\frac{\sqrt{h^{5}}}{6\sqrt{h^{3}}}, m=\frac{5}{2} und n=\frac{3}{2}. Wenden Sie die Formel an: \frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}, wobei a=5, b=2 und c=-3.
((h^5^(1/2))/(6h^3^(1/2)))^4
Endgültige Antwort auf das Problem
$\frac{h^4}{1296}$