Übung
$\frac { x ^ { 4 } - 4 x ^ { 2 } + 6 } { x + 2 }$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-4x^2+6$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}x^{3}-2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}x^{4}\phantom{-;x^n}-4x^{2}\phantom{-;x^n}+6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-x^{4}-2x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-2x^{3};}-2x^{3}-4x^{2}\phantom{-;x^n}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}2x^{3}+4x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}2x^{3}+4x^{2}-;x^n;}\phantom{;}6\phantom{;}\phantom{;}\\\end{array}$
$x^{3}-2x^{2}+\frac{6}{x+2}$
Endgültige Antwort auf das Problem
$x^{3}-2x^{2}+\frac{6}{x+2}$