Übung
$\frac{x^8+11x^4+20}{x^4+9}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^8+11x^4+20$ durch $x^4+9$
$\begin{array}{l}\phantom{\phantom{;}x^{4}+9;}{\phantom{;}x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+2\phantom{;}\phantom{;}}\\\phantom{;}x^{4}+9\overline{\smash{)}\phantom{;}x^{8}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+11x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+20\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{4}+9;}\underline{-x^{8}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-9x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{8}-9x^{4};}\phantom{;}2x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+20\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{4}+9-;x^n;}\underline{-2x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}-18\phantom{;}\phantom{;}}\\\phantom{;-2x^{4}-18\phantom{;}\phantom{;}-;x^n;}\phantom{;}2\phantom{;}\phantom{;}\\\end{array}$
$x^{4}+2+\frac{2}{x^4+9}$
Endgültige Antwort auf das Problem
$x^{4}+2+\frac{2}{x^4+9}$