Übung
$\frac{x^6+x^3-2x^2+3}{x^2-7}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^6+x^3-2x^2+3$ durch $x^2-7$
$\begin{array}{l}\phantom{\phantom{;}x^{2}-7;}{\phantom{;}x^{4}\phantom{-;x^n}+7x^{2}+x\phantom{;}+47\phantom{;}\phantom{;}}\\\phantom{;}x^{2}-7\overline{\smash{)}\phantom{;}x^{6}\phantom{-;x^n}\phantom{-;x^n}+x^{3}-2x^{2}\phantom{-;x^n}+3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{2}-7;}\underline{-x^{6}\phantom{-;x^n}+7x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{6}+7x^{4};}\phantom{;}7x^{4}+x^{3}-2x^{2}\phantom{-;x^n}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}-7-;x^n;}\underline{-7x^{4}\phantom{-;x^n}+49x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-7x^{4}+49x^{2}-;x^n;}\phantom{;}x^{3}+47x^{2}\phantom{-;x^n}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}-7-;x^n-;x^n;}\underline{-x^{3}\phantom{-;x^n}+7x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-x^{3}+7x\phantom{;}-;x^n-;x^n;}\phantom{;}47x^{2}+7x\phantom{;}+3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}-7-;x^n-;x^n-;x^n;}\underline{-47x^{2}\phantom{-;x^n}+329\phantom{;}\phantom{;}}\\\phantom{;;;-47x^{2}+329\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}7x\phantom{;}+332\phantom{;}\phantom{;}\\\end{array}$
$x^{4}+7x^{2}+x+47+\frac{7x+332}{x^2-7}$
Endgültige Antwort auf das Problem
$x^{4}+7x^{2}+x+47+\frac{7x+332}{x^2-7}$