Übung
$\frac{x^4-x+1}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-x+1$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}x^{3}-2x^{2}+4x\phantom{;}-9\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}x^{4}\phantom{-;x^n}\phantom{-;x^n}-x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-x^{4}-2x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}-2x^{3};}-2x^{3}\phantom{-;x^n}-x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}2x^{3}+4x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}2x^{3}+4x^{2}-;x^n;}\phantom{;}4x^{2}-x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-4x^{2}-8x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-4x^{2}-8x\phantom{;}-;x^n-;x^n;}-9x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}9x\phantom{;}+18\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}9x\phantom{;}+18\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}19\phantom{;}\phantom{;}\\\end{array}$
$x^{3}-2x^{2}+4x-9+\frac{19}{x+2}$
Endgültige Antwort auf das Problem
$x^{3}-2x^{2}+4x-9+\frac{19}{x+2}$