Übung
$\frac{x^4-6x^3-56x+48}{x-7}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^4-6x^3-56x+48$ durch $x-7$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-7;}{\phantom{;}x^{3}+x^{2}+7x\phantom{;}-7\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-7\overline{\smash{)}\phantom{;}x^{4}-6x^{3}\phantom{-;x^n}-56x\phantom{;}+48\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-7;}\underline{-x^{4}+7x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{4}+7x^{3};}\phantom{;}x^{3}\phantom{-;x^n}-56x\phantom{;}+48\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-7-;x^n;}\underline{-x^{3}+7x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-x^{3}+7x^{2}-;x^n;}\phantom{;}7x^{2}-56x\phantom{;}+48\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-7-;x^n-;x^n;}\underline{-7x^{2}+49x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-7x^{2}+49x\phantom{;}-;x^n-;x^n;}-7x\phantom{;}+48\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-7-;x^n-;x^n-;x^n;}\underline{\phantom{;}7x\phantom{;}-49\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}7x\phantom{;}-49\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}-1\phantom{;}\phantom{;}\\\end{array}$
$x^{3}+x^{2}+7x-7+\frac{-1}{x-7}$
Endgültige Antwort auf das Problem
$x^{3}+x^{2}+7x-7+\frac{-1}{x-7}$