Übung
$\frac{x^3-8x^2-6x+1}{x+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-8x^2-6x+1$ durch $x+5$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+5;}{\phantom{;}x^{2}-13x\phantom{;}+59\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+5\overline{\smash{)}\phantom{;}x^{3}-8x^{2}-6x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+5;}\underline{-x^{3}-5x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-5x^{2};}-13x^{2}-6x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n;}\underline{\phantom{;}13x^{2}+65x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}13x^{2}+65x\phantom{;}-;x^n;}\phantom{;}59x\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n;}\underline{-59x\phantom{;}-295\phantom{;}\phantom{;}}\\\phantom{;;-59x\phantom{;}-295\phantom{;}\phantom{;}-;x^n-;x^n;}-294\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-13x+59+\frac{-294}{x+5}$
Endgültige Antwort auf das Problem
$x^{2}-13x+59+\frac{-294}{x+5}$