Endgültige Antwort auf das Problem
$x^{2}-5x+19+\frac{-115}{x+5}$
Haben Sie eine andere Antwort? Überprüfen Sie sie hier!
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-6x-20$ durch $x+5$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+5;}{\phantom{;}x^{2}-5x\phantom{;}+19\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+5\overline{\smash{)}\phantom{;}x^{3}\phantom{-;x^n}-6x\phantom{;}-20\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+5;}\underline{-x^{3}-5x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-5x^{2};}-5x^{2}-6x\phantom{;}-20\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n;}\underline{\phantom{;}5x^{2}+25x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}5x^{2}+25x\phantom{;}-;x^n;}\phantom{;}19x\phantom{;}-20\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+5-;x^n-;x^n;}\underline{-19x\phantom{;}-95\phantom{;}\phantom{;}}\\\phantom{;;-19x\phantom{;}-95\phantom{;}\phantom{;}-;x^n-;x^n;}-115\phantom{;}\phantom{;}\\\end{array}$
$x^{2}-5x+19+\frac{-115}{x+5}$
Endgültige Antwort auf das Problem
$x^{2}-5x+19+\frac{-115}{x+5}$