Übung
$\frac{x^3-2x^2+7}{x^2+4x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-2x^2+7$ durch $x^2+4x+1$
$\begin{array}{l}\phantom{\phantom{;}x^{2}+4x\phantom{;}+1;}{\phantom{;}x\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{;}x^{2}+4x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{3}-2x^{2}\phantom{-;x^n}+7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x^{2}+4x\phantom{;}+1;}\underline{-x^{3}-4x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{-x^{3}-4x^{2}-x\phantom{;};}-6x^{2}-x\phantom{;}+7\phantom{;}\phantom{;}\\\phantom{\phantom{;}x^{2}+4x\phantom{;}+1-;x^n;}\underline{\phantom{;}6x^{2}+24x\phantom{;}+6\phantom{;}\phantom{;}}\\\phantom{;\phantom{;}6x^{2}+24x\phantom{;}+6\phantom{;}\phantom{;}-;x^n;}\phantom{;}23x\phantom{;}+13\phantom{;}\phantom{;}\\\end{array}$
$x-6+\frac{23x+13}{x^2+4x+1}$
Endgültige Antwort auf das Problem
$x-6+\frac{23x+13}{x^2+4x+1}$