Übung
$\frac{x^3-15x-68}{x-4}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3-15x-68$ durch $x-4$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-4;}{\phantom{;}x^{2}+4x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-4\overline{\smash{)}\phantom{;}x^{3}\phantom{-;x^n}-15x\phantom{;}-68\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-4;}\underline{-x^{3}+4x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}+4x^{2};}\phantom{;}4x^{2}-15x\phantom{;}-68\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n;}\underline{-4x^{2}+16x\phantom{;}\phantom{-;x^n}}\\\phantom{;-4x^{2}+16x\phantom{;}-;x^n;}\phantom{;}x\phantom{;}-68\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-4-;x^n-;x^n;}\underline{-x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{;;-x\phantom{;}+4\phantom{;}\phantom{;}-;x^n-;x^n;}-64\phantom{;}\phantom{;}\\\end{array}$
$x^{2}+4x+1+\frac{-64}{x-4}$
Endgültige Antwort auf das Problem
$x^{2}+4x+1+\frac{-64}{x-4}$