Übung
$\frac{x^3}{1-x}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3$ durch $1-x$
$\begin{array}{l}\phantom{-x\phantom{;}+1;}{-x^{2}-x\phantom{;}-1\phantom{;}\phantom{;}}\\-x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x\phantom{;}+1;}\underline{-x^{3}+x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}+x^{2};}\phantom{;}x^{2}\phantom{-;x^n}\phantom{-;x^n}\\\phantom{-x\phantom{;}+1-;x^n;}\underline{-x^{2}+x\phantom{;}\phantom{-;x^n}}\\\phantom{;-x^{2}+x\phantom{;}-;x^n;}\phantom{;}x\phantom{;}\phantom{-;x^n}\\\phantom{-x\phantom{;}+1-;x^n-;x^n;}\underline{-x\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;;-x\phantom{;}+1\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}1\phantom{;}\phantom{;}\\\end{array}$
$-x^{2}-x-1+\frac{1}{1-x}$
Endgültige Antwort auf das Problem
$-x^{2}-x-1+\frac{1}{1-x}$