Übung
$\frac{18x^3+33x^2-40x-75}{3x+5}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $18x^3+33x^2-40x-75$ durch $3x+5$
$\begin{array}{l}\phantom{\phantom{;}3x\phantom{;}+5;}{\phantom{;}6x^{2}+x\phantom{;}-15\phantom{;}\phantom{;}}\\\phantom{;}3x\phantom{;}+5\overline{\smash{)}\phantom{;}18x^{3}+33x^{2}-40x\phantom{;}-75\phantom{;}\phantom{;}}\\\phantom{\phantom{;}3x\phantom{;}+5;}\underline{-18x^{3}-30x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-18x^{3}-30x^{2};}\phantom{;}3x^{2}-40x\phantom{;}-75\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+5-;x^n;}\underline{-3x^{2}-5x\phantom{;}\phantom{-;x^n}}\\\phantom{;-3x^{2}-5x\phantom{;}-;x^n;}-45x\phantom{;}-75\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+5-;x^n-;x^n;}\underline{\phantom{;}45x\phantom{;}+75\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}45x\phantom{;}+75\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$6x^{2}+x-15$