Übung
$\frac{x^3+2x^2+4x-5}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $x^3+2x^2+4x-5$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}x^{2}+x\phantom{;}+3\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}x^{3}+2x^{2}+4x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-x^{3}-x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-x^{3}-x^{2};}\phantom{;}x^{2}+4x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{-x^{2}-x\phantom{;}\phantom{-;x^n}}\\\phantom{;-x^{2}-x\phantom{;}-;x^n;}\phantom{;}3x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-3x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{;;-3x\phantom{;}-3\phantom{;}\phantom{;}-;x^n-;x^n;}-8\phantom{;}\phantom{;}\\\end{array}$
$x^{2}+x+3+\frac{-8}{x+1}$
Endgültige Antwort auf das Problem
$x^{2}+x+3+\frac{-8}{x+1}$