Übung
$\frac{m^4+1}{m+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $m^4+1$ durch $m+1$
$\begin{array}{l}\phantom{\phantom{;}m\phantom{;}+1;}{\phantom{;}m^{3}-m^{2}+m\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{;}m\phantom{;}+1\overline{\smash{)}\phantom{;}m^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}m\phantom{;}+1;}\underline{-m^{4}-m^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-m^{4}-m^{3};}-m^{3}\phantom{-;x^n}\phantom{-;x^n}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}m\phantom{;}+1-;x^n;}\underline{\phantom{;}m^{3}+m^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}m^{3}+m^{2}-;x^n;}\phantom{;}m^{2}\phantom{-;x^n}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}m\phantom{;}+1-;x^n-;x^n;}\underline{-m^{2}-m\phantom{;}\phantom{-;x^n}}\\\phantom{;;-m^{2}-m\phantom{;}-;x^n-;x^n;}-m\phantom{;}+1\phantom{;}\phantom{;}\\\phantom{\phantom{;}m\phantom{;}+1-;x^n-;x^n-;x^n;}\underline{\phantom{;}m\phantom{;}+1\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}m\phantom{;}+1\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}2\phantom{;}\phantom{;}\\\end{array}$
$m^{3}-m^{2}+m-1+\frac{2}{m+1}$
Endgültige Antwort auf das Problem
$m^{3}-m^{2}+m-1+\frac{2}{m+1}$