Übung
$\frac{dy}{dx}x+x^2y=x$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. dy/dxx+x^2y=x. Teilen Sie alle Terme der Differentialgleichung durch x. Vereinfachung. Wir können erkennen, dass die Differentialgleichung die Form hat: \frac{dy}{dx} + P(x)\cdot y(x) = Q(x), so dass wir sie als lineare Differentialgleichung erster Ordnung einstufen können, wobei P(x)=x und Q(x)=1. Um die Differentialgleichung zu lösen, müssen wir zunächst den integrierenden Faktor finden \mu(x). Um \mu(x) zu finden, müssen wir zunächst Folgendes berechnen \int P(x)dx.
Endgültige Antwort auf das Problem
$e^{\frac{1}{2}x^2}y=\sum_{n=0}^{\infty } \frac{\left(\frac{1}{2}\right)^nx^{\left(2n+1\right)}}{\left(2n+1\right)\left(n!\right)}+C_0$