Übung
$\frac{d}{dx}\left(\frac{\left(x+2\right)^4\left(x-1\right)^3}{\left(2x+1\right)^2}\right)$
Schritt-für-Schritt-Lösung
Learn how to solve problems step by step online. Find the derivative d/dx(((x+2)^4(x-1)^3)/((2x+1)^2)). Wenden Sie die Formel an: \frac{d}{dx}\left(x\right)=y=x, wobei d/dx=\frac{d}{dx}, d/dx?x=\frac{d}{dx}\left(\frac{\left(x+2\right)^4\left(x-1\right)^3}{\left(2x+1\right)^2}\right) und x=\frac{\left(x+2\right)^4\left(x-1\right)^3}{\left(2x+1\right)^2}. Wenden Sie die Formel an: y=x\to \ln\left(y\right)=\ln\left(x\right), wobei x=\frac{\left(x+2\right)^4\left(x-1\right)^3}{\left(2x+1\right)^2}. Wenden Sie die Formel an: y=x\to y=x, wobei x=\ln\left(\frac{\left(x+2\right)^4\left(x-1\right)^3}{\left(2x+1\right)^2}\right) und y=\ln\left(y\right). Wenden Sie die Formel an: \ln\left(y\right)=x\to \frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(x\right), wobei x=4\ln\left(x+2\right)+3\ln\left(x-1\right)-2\ln\left(2x+1\right).
Find the derivative d/dx(((x+2)^4(x-1)^3)/((2x+1)^2))
Endgültige Antwort auf das Problem
$\left(\frac{4}{x+2}+\frac{3}{x-1}+\frac{-4}{2x+1}\right)\frac{\left(x+2\right)^4\left(x-1\right)^3}{\left(2x+1\right)^2}$