Endgültige Antwort auf das Problem
Schritt-für-Schritt-Lösung
Wie sollte ich dieses Problem lösen?
- Wählen Sie eine Option
- Produkt von Binomischen mit gemeinsamem Term
- FOIL Method
- Mehr laden...
Wenden Sie die Formel an: $\frac{d}{dx}\left(\frac{a}{b}\right)$$=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}$, wobei $a=\sqrt{x}$ und $b=\sin\left(x\right)$
Learn how to solve quotientenregel der differenzierung problems step by step online.
$\frac{\frac{d}{dx}\left(\sqrt{x}\right)\sin\left(x\right)-\sqrt{x}\frac{d}{dx}\left(\sin\left(x\right)\right)}{\sin\left(x\right)^2}$
Learn how to solve quotientenregel der differenzierung problems step by step online. Find the derivative d/dx((x^(1/2))/sin(x)). Wenden Sie die Formel an: \frac{d}{dx}\left(\frac{a}{b}\right)=\frac{\frac{d}{dx}\left(a\right)b-a\frac{d}{dx}\left(b\right)}{b^2}, wobei a=\sqrt{x} und b=\sin\left(x\right). Wenden Sie die Formel an: \frac{d}{dx}\left(x^a\right)=ax^{\left(a-1\right)}. Anwendung der trigonometrischen Identität: \frac{d}{dx}\left(\sin\left(\theta \right)\right)=\cos\left(\theta \right). Wenden Sie die Formel an: x^a=\frac{1}{x^{\left|a\right|}}.