Übung
$\frac{cos\left(\theta\right)}{tan\left(\theta\right)+cot\left(\theta\right)}$
Schritt-für-Schritt-Lösung
Learn how to solve vereinfachung von algebraischen ausdrücken problems step by step online. cos(t)/(tan(t)+cot(t)). Anwendung der trigonometrischen Identitä\theta: \tan\left(\theta \right)=\frac{\sin\left(\theta \right)}{\cos\left(\theta \right)}, wobei x=\theta. Wenden Sie die Formel an: a+\frac{b}{c}=\frac{b+ac}{c}, wobei a=\cot\left(\theta\right), b=\sin\left(\theta\right), c=\cos\left(\theta\right), a+b/c=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}+\cot\left(\theta\right) und b/c=\frac{\sin\left(\theta\right)}{\cos\left(\theta\right)}. Wenden Sie die Formel an: \frac{a}{\frac{b}{c}}=\frac{ac}{b}, wobei a=\cos\left(\theta\right), b=\sin\left(\theta\right)+\cot\left(\theta\right)\cos\left(\theta\right), c=\cos\left(\theta\right), a/b/c=\frac{\cos\left(\theta\right)}{\frac{\sin\left(\theta\right)+\cot\left(\theta\right)\cos\left(\theta\right)}{\cos\left(\theta\right)}} und b/c=\frac{\sin\left(\theta\right)+\cot\left(\theta\right)\cos\left(\theta\right)}{\cos\left(\theta\right)}. Applying the trigonometric identity: \cot\left(\theta \right) = \frac{\cos\left(\theta \right)}{\sin\left(\theta \right)}.
Endgültige Antwort auf das Problem
$\sin\left(\theta\right)-\sin\left(\theta\right)^{3}$