Übung
$\frac{9x^4-15x^2+x-5}{x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $9x^4-15x^2+x-5$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}9x^{3}-27x^{2}+66x\phantom{;}-197\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}9x^{4}\phantom{-;x^n}-15x^{2}+x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-9x^{4}-27x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-9x^{4}-27x^{3};}-27x^{3}-15x^{2}+x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}27x^{3}+81x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}27x^{3}+81x^{2}-;x^n;}\phantom{;}66x^{2}+x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{-66x^{2}-198x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-66x^{2}-198x\phantom{;}-;x^n-;x^n;}-197x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n-;x^n;}\underline{\phantom{;}197x\phantom{;}+591\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}197x\phantom{;}+591\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}586\phantom{;}\phantom{;}\\\end{array}$
$9x^{3}-27x^{2}+66x-197+\frac{586}{x+3}$
Endgültige Antwort auf das Problem
$9x^{3}-27x^{2}+66x-197+\frac{586}{x+3}$