Übung
$\frac{8x^5+5x^3+5x^2+8x+16}{2x^3+x^2+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $8x^5+5x^3+5x^2+8x+16$ durch $2x^3+x^2+3$
$\begin{array}{l}\phantom{\phantom{;}2x^{3}+x^{2}+3;}{\phantom{;}4x^{2}-2x\phantom{;}+\frac{7}{2}\phantom{;}\phantom{;}}\\\phantom{;}2x^{3}+x^{2}+3\overline{\smash{)}\phantom{;}8x^{5}\phantom{-;x^n}+5x^{3}+5x^{2}+8x\phantom{;}+16\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2x^{3}+x^{2}+3;}\underline{-8x^{5}-4x^{4}\phantom{-;x^n}-12x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-8x^{5}-4x^{4}-12x^{2};}-4x^{4}+5x^{3}-7x^{2}+8x\phantom{;}+16\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x^{3}+x^{2}+3-;x^n;}\underline{\phantom{;}4x^{4}+2x^{3}\phantom{-;x^n}+6x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}4x^{4}+2x^{3}+6x\phantom{;}-;x^n;}\phantom{;}7x^{3}-7x^{2}+14x\phantom{;}+16\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x^{3}+x^{2}+3-;x^n-;x^n;}\underline{-7x^{3}-\frac{7}{2}x^{2}\phantom{-;x^n}-\frac{21}{2}\phantom{;}\phantom{;}}\\\phantom{;;-7x^{3}-\frac{7}{2}x^{2}-\frac{21}{2}\phantom{;}\phantom{;}-;x^n-;x^n;}-\frac{21}{2}x^{2}+14x\phantom{;}+\frac{11}{2}\phantom{;}\phantom{;}\\\end{array}$
$4x^{2}-2x+\frac{7}{2}+\frac{-\frac{21}{2}x^{2}+14x+\frac{11}{2}}{2x^3+x^2+3}$
Endgültige Antwort auf das Problem
$4x^{2}-2x+\frac{7}{2}+\frac{-\frac{21}{2}x^{2}+14x+\frac{11}{2}}{2x^3+x^2+3}$