Übung
$\frac{8x^3\:+\:2x^2\:-x+4}{x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $8x^3+2x^2-x+4$ durch $x+1$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+1;}{\phantom{;}8x^{2}-6x\phantom{;}+5\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+1\overline{\smash{)}\phantom{;}8x^{3}+2x^{2}-x\phantom{;}+4\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+1;}\underline{-8x^{3}-8x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-8x^{3}-8x^{2};}-6x^{2}-x\phantom{;}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n;}\underline{\phantom{;}6x^{2}+6x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}6x^{2}+6x\phantom{;}-;x^n;}\phantom{;}5x\phantom{;}+4\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+1-;x^n-;x^n;}\underline{-5x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{;;-5x\phantom{;}-5\phantom{;}\phantom{;}-;x^n-;x^n;}-1\phantom{;}\phantom{;}\\\end{array}$
$8x^{2}-6x+5+\frac{-1}{x+1}$
Endgültige Antwort auf das Problem
$8x^{2}-6x+5+\frac{-1}{x+1}$