Übung
$\frac{6x^3+23x^2+11x-5}{2x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3+23x^2+11x-5$ durch $2x+3$
$\begin{array}{l}\phantom{\phantom{;}2x\phantom{;}+3;}{\phantom{;}3x^{2}+7x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{;}2x\phantom{;}+3\overline{\smash{)}\phantom{;}6x^{3}+23x^{2}+11x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{\phantom{;}2x\phantom{;}+3;}\underline{-6x^{3}-9x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}-9x^{2};}\phantom{;}14x^{2}+11x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x\phantom{;}+3-;x^n;}\underline{-14x^{2}-21x\phantom{;}\phantom{-;x^n}}\\\phantom{;-14x^{2}-21x\phantom{;}-;x^n;}-10x\phantom{;}-5\phantom{;}\phantom{;}\\\phantom{\phantom{;}2x\phantom{;}+3-;x^n-;x^n;}\underline{\phantom{;}10x\phantom{;}+15\phantom{;}\phantom{;}}\\\phantom{;;\phantom{;}10x\phantom{;}+15\phantom{;}\phantom{;}-;x^n-;x^n;}\phantom{;}10\phantom{;}\phantom{;}\\\end{array}$
$3x^{2}+7x-5+\frac{10}{2x+3}$
Endgültige Antwort auf das Problem
$3x^{2}+7x-5+\frac{10}{2x+3}$