Übung
$\frac{6x\:3\:+11x\:2\:+24x+7}{3x+1}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $6x^3+11x^2+24x+7$ durch $3x+1$
$\begin{array}{l}\phantom{\phantom{;}3x\phantom{;}+1;}{\phantom{;}2x^{2}+3x\phantom{;}+7\phantom{;}\phantom{;}}\\\phantom{;}3x\phantom{;}+1\overline{\smash{)}\phantom{;}6x^{3}+11x^{2}+24x\phantom{;}+7\phantom{;}\phantom{;}}\\\phantom{\phantom{;}3x\phantom{;}+1;}\underline{-6x^{3}-2x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-6x^{3}-2x^{2};}\phantom{;}9x^{2}+24x\phantom{;}+7\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+1-;x^n;}\underline{-9x^{2}-3x\phantom{;}\phantom{-;x^n}}\\\phantom{;-9x^{2}-3x\phantom{;}-;x^n;}\phantom{;}21x\phantom{;}+7\phantom{;}\phantom{;}\\\phantom{\phantom{;}3x\phantom{;}+1-;x^n-;x^n;}\underline{-21x\phantom{;}-7\phantom{;}\phantom{;}}\\\phantom{;;-21x\phantom{;}-7\phantom{;}\phantom{;}-;x^n-;x^n;}\\\end{array}$
Endgültige Antwort auf das Problem
$2x^{2}+3x+7$