Übung
$\frac{4x^5-x^7+3x^2+x-1}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $4x^5-x^7+3x^2+x-1$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{-x^{6}+2x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+3x\phantom{;}-5\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}-x^{7}\phantom{-;x^n}+4x^{5}\phantom{-;x^n}\phantom{-;x^n}+3x^{2}+x\phantom{;}-1\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{\phantom{;}x^{7}+2x^{6}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}x^{7}+2x^{6};}\phantom{;}2x^{6}+4x^{5}\phantom{-;x^n}\phantom{-;x^n}+3x^{2}+x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{-2x^{6}-4x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-2x^{6}-4x^{5}-;x^n;}\phantom{;}3x^{2}+x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-3x^{2}-6x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-3x^{2}-6x\phantom{;}-;x^n-;x^n;}-5x\phantom{;}-1\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}5x\phantom{;}+10\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}5x\phantom{;}+10\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}9\phantom{;}\phantom{;}\\\end{array}$
$-x^{6}+2x^{5}+3x-5+\frac{9}{x+2}$
Endgültige Antwort auf das Problem
$-x^{6}+2x^{5}+3x-5+\frac{9}{x+2}$