Übung
$\frac{4x^5-3x^4+x^2-x-3}{x+2}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $4x^5-3x^4+x^2-x-3$ durch $x+2$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+2;}{\phantom{;}4x^{4}-11x^{3}+22x^{2}-43x\phantom{;}+85\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+2\overline{\smash{)}\phantom{;}4x^{5}-3x^{4}\phantom{-;x^n}+x^{2}-x\phantom{;}-3\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+2;}\underline{-4x^{5}-8x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-4x^{5}-8x^{4};}-11x^{4}\phantom{-;x^n}+x^{2}-x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n;}\underline{\phantom{;}11x^{4}+22x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}11x^{4}+22x^{3}-;x^n;}\phantom{;}22x^{3}+x^{2}-x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n;}\underline{-22x^{3}-44x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;-22x^{3}-44x^{2}-;x^n-;x^n;}-43x^{2}-x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}43x^{2}+86x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}43x^{2}+86x\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}85x\phantom{;}-3\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+2-;x^n-;x^n-;x^n-;x^n;}\underline{-85x\phantom{;}-170\phantom{;}\phantom{;}}\\\phantom{;;;;-85x\phantom{;}-170\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n;}-173\phantom{;}\phantom{;}\\\end{array}$
$4x^{4}-11x^{3}+22x^{2}-43x+85+\frac{-173}{x+2}$
Endgültige Antwort auf das Problem
$4x^{4}-11x^{3}+22x^{2}-43x+85+\frac{-173}{x+2}$