Übung
$\frac{4x^4+9x^3+9x^2+5x+6}{-7+x}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $4x^4+9x^3+9x^2+5x+6$ durch $-7+x$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-7;}{\phantom{;}4x^{3}+37x^{2}+268x\phantom{;}+1881\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-7\overline{\smash{)}\phantom{;}4x^{4}+9x^{3}+9x^{2}+5x\phantom{;}+6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-7;}\underline{-4x^{4}+28x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-4x^{4}+28x^{3};}\phantom{;}37x^{3}+9x^{2}+5x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-7-;x^n;}\underline{-37x^{3}+259x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-37x^{3}+259x^{2}-;x^n;}\phantom{;}268x^{2}+5x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-7-;x^n-;x^n;}\underline{-268x^{2}+1876x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-268x^{2}+1876x\phantom{;}-;x^n-;x^n;}\phantom{;}1881x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-7-;x^n-;x^n-;x^n;}\underline{-1881x\phantom{;}+13167\phantom{;}\phantom{;}}\\\phantom{;;;-1881x\phantom{;}+13167\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}13173\phantom{;}\phantom{;}\\\end{array}$
$4x^{3}+37x^{2}+268x+1881+\frac{13173}{-7+x}$
Endgültige Antwort auf das Problem
$4x^{3}+37x^{2}+268x+1881+\frac{13173}{-7+x}$