Übung
$\frac{3x^4-2x^3+4x-8}{x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^4-2x^3+4x-8$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}3x^{3}-11x^{2}+33x\phantom{;}-95\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}3x^{4}-2x^{3}\phantom{-;x^n}+4x\phantom{;}-8\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-3x^{4}-9x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{4}-9x^{3};}-11x^{3}\phantom{-;x^n}+4x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}11x^{3}+33x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}11x^{3}+33x^{2}-;x^n;}\phantom{;}33x^{2}+4x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{-33x^{2}-99x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-33x^{2}-99x\phantom{;}-;x^n-;x^n;}-95x\phantom{;}-8\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n-;x^n;}\underline{\phantom{;}95x\phantom{;}+285\phantom{;}\phantom{;}}\\\phantom{;;;\phantom{;}95x\phantom{;}+285\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}277\phantom{;}\phantom{;}\\\end{array}$
$3x^{3}-11x^{2}+33x-95+\frac{277}{x+3}$
Endgültige Antwort auf das Problem
$3x^{3}-11x^{2}+33x-95+\frac{277}{x+3}$