Übung
$\frac{3x^3-2x^2-19x-6}{x+3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $3x^3-2x^2-19x-6$ durch $x+3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}+3;}{\phantom{;}3x^{2}-11x\phantom{;}+14\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}+3\overline{\smash{)}\phantom{;}3x^{3}-2x^{2}-19x\phantom{;}-6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}+3;}\underline{-3x^{3}-9x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-3x^{3}-9x^{2};}-11x^{2}-19x\phantom{;}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n;}\underline{\phantom{;}11x^{2}+33x\phantom{;}\phantom{-;x^n}}\\\phantom{;\phantom{;}11x^{2}+33x\phantom{;}-;x^n;}\phantom{;}14x\phantom{;}-6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}+3-;x^n-;x^n;}\underline{-14x\phantom{;}-42\phantom{;}\phantom{;}}\\\phantom{;;-14x\phantom{;}-42\phantom{;}\phantom{;}-;x^n-;x^n;}-48\phantom{;}\phantom{;}\\\end{array}$
$3x^{2}-11x+14+\frac{-48}{x+3}$
Endgültige Antwort auf das Problem
$3x^{2}-11x+14+\frac{-48}{x+3}$