Übung
$\frac{32-x^5}{2-x}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $32-x^5$ durch $2-x$
$\begin{array}{l}\phantom{-x\phantom{;}+2;}{\phantom{;}x^{4}+2x^{3}+4x^{2}+8x\phantom{;}+16\phantom{;}\phantom{;}}\\-x\phantom{;}+2\overline{\smash{)}-x^{5}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+32\phantom{;}\phantom{;}}\\\phantom{-x\phantom{;}+2;}\underline{\phantom{;}x^{5}-2x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{\phantom{;}x^{5}-2x^{4};}-2x^{4}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}+32\phantom{;}\phantom{;}\\\phantom{-x\phantom{;}+2-;x^n;}\underline{\phantom{;}2x^{4}-4x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;\phantom{;}2x^{4}-4x^{3}-;x^n;}-4x^{3}\phantom{-;x^n}\phantom{-;x^n}+32\phantom{;}\phantom{;}\\\phantom{-x\phantom{;}+2-;x^n-;x^n;}\underline{\phantom{;}4x^{3}-8x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;;\phantom{;}4x^{3}-8x^{2}-;x^n-;x^n;}-8x^{2}\phantom{-;x^n}+32\phantom{;}\phantom{;}\\\phantom{-x\phantom{;}+2-;x^n-;x^n-;x^n;}\underline{\phantom{;}8x^{2}-16x\phantom{;}\phantom{-;x^n}}\\\phantom{;;;\phantom{;}8x^{2}-16x\phantom{;}-;x^n-;x^n-;x^n;}-16x\phantom{;}+32\phantom{;}\phantom{;}\\\phantom{-x\phantom{;}+2-;x^n-;x^n-;x^n-;x^n;}\underline{\phantom{;}16x\phantom{;}-32\phantom{;}\phantom{;}}\\\phantom{;;;;\phantom{;}16x\phantom{;}-32\phantom{;}\phantom{;}-;x^n-;x^n-;x^n-;x^n;}\\\end{array}$
$x^{4}+2x^{3}+4x^{2}+8x+16$
Endgültige Antwort auf das Problem
$x^{4}+2x^{3}+4x^{2}+8x+16$