Übung
$\frac{2x^4-5x^3+4x^2+3x+6}{x-3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-5x^3+4x^2+3x+6$ durch $x-3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-3;}{\phantom{;}2x^{3}+x^{2}+7x\phantom{;}+24\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-3\overline{\smash{)}\phantom{;}2x^{4}-5x^{3}+4x^{2}+3x\phantom{;}+6\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-3;}\underline{-2x^{4}+6x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}+6x^{3};}\phantom{;}x^{3}+4x^{2}+3x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n;}\underline{-x^{3}+3x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-x^{3}+3x^{2}-;x^n;}\phantom{;}7x^{2}+3x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n;}\underline{-7x^{2}+21x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-7x^{2}+21x\phantom{;}-;x^n-;x^n;}\phantom{;}24x\phantom{;}+6\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n-;x^n;}\underline{-24x\phantom{;}+72\phantom{;}\phantom{;}}\\\phantom{;;;-24x\phantom{;}+72\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}78\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}+x^{2}+7x+24+\frac{78}{x-3}$
Endgültige Antwort auf das Problem
$2x^{3}+x^{2}+7x+24+\frac{78}{x-3}$