Übung
$\frac{2x^4-3x^2-20}{x-3}$
Schritt-für-Schritt-Lösung
1
Teilen Sie $2x^4-3x^2-20$ durch $x-3$
$\begin{array}{l}\phantom{\phantom{;}x\phantom{;}-3;}{\phantom{;}2x^{3}+6x^{2}+15x\phantom{;}+45\phantom{;}\phantom{;}}\\\phantom{;}x\phantom{;}-3\overline{\smash{)}\phantom{;}2x^{4}\phantom{-;x^n}-3x^{2}\phantom{-;x^n}-20\phantom{;}\phantom{;}}\\\phantom{\phantom{;}x\phantom{;}-3;}\underline{-2x^{4}+6x^{3}\phantom{-;x^n}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{-2x^{4}+6x^{3};}\phantom{;}6x^{3}-3x^{2}\phantom{-;x^n}-20\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n;}\underline{-6x^{3}+18x^{2}\phantom{-;x^n}\phantom{-;x^n}}\\\phantom{;-6x^{3}+18x^{2}-;x^n;}\phantom{;}15x^{2}\phantom{-;x^n}-20\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n;}\underline{-15x^{2}+45x\phantom{;}\phantom{-;x^n}}\\\phantom{;;-15x^{2}+45x\phantom{;}-;x^n-;x^n;}\phantom{;}45x\phantom{;}-20\phantom{;}\phantom{;}\\\phantom{\phantom{;}x\phantom{;}-3-;x^n-;x^n-;x^n;}\underline{-45x\phantom{;}+135\phantom{;}\phantom{;}}\\\phantom{;;;-45x\phantom{;}+135\phantom{;}\phantom{;}-;x^n-;x^n-;x^n;}\phantom{;}115\phantom{;}\phantom{;}\\\end{array}$
$2x^{3}+6x^{2}+15x+45+\frac{115}{x-3}$
Endgültige Antwort auf das Problem
$2x^{3}+6x^{2}+15x+45+\frac{115}{x-3}$